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NATIONAL ADVISORY COMMITTEE! FOR AER0NAOTIC3 

ADVANCE RESTRICTED REPORT 

THB CONFORMAL TRANSFORMATION OF AN AIRFOIL INTO 

A STRAIGHT LIH3 AND ITS APPLICATION TO THB 

INVERSE PROBLEM or AIRFOIL THEOHY 

By William Hutterperl 

SUMMARY 

A method of conformal transformation is developed 
that maps an airfoil into a straight line, the line 
being chosen as the extended chord line' of the airfoil. 
The mapping is accomplished by operating directly with 
the airfoii ordinates.  The absence of any preliminary 
transformation is found to shorten the wort substantially 
over that of previous nethods.  Use is made of the 
superposition of solutions to obtain a rigorous counter- 
part of the approximate nethods of thin-airfoil theory. 
The method is applied to the solution of tho direct and 
inverse problems for arbitrary airfoils and pressure 
distributions.  Numerical examples are given.  Appli- 
cations to more general types of regions, in particular 
to biplanes und  to cascades of airfoils, are indicated. 

INTRODUCTION 

In an attempt to set up an efficient numerical method 
for finding the potential flow through an arbitrary cas- 
cade of airfoils (reference 1) a method of conformal 
transformation was developed that was found to apply to 
advantage in the cass of isolated airfoils. 

The method consists in transforming the isolated 
o^rfoil directly to a streikt line, namely, the extended 

.rd line of the airfoil. The absence of the hitherto 
-dual preliminary transformation of the airfoil into a 
neer circle makes for a decided simplification of concept 
and proceduro. 
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The exposition of the method, followed by ita appli- 
cation to the direct problem of the conformal mapping of 
given airfoils, is given In part I of this paper. In 
part IT the method is applied to the inverse problem of 
airfoil theory: namely, the derivation of an airfoil sec- 
tion to satisfy a prescribed velocity distribution. A 
comparison with previous inverse methods is made. Addi- 
tional material that will be of use in the application of 
the method is given in the appendixes.  In appendix A cer- 
tain numerical details of the calculations are discussed. 
In appendix B extensions of the method to the conformal 
mapping of other types of regions are indicated. The 
relation of the methods used for the trapping of airfoils 
to the Cauchy integral formula is discussed in appendix C. 

Acknowledgment is made to Mrs. T.ois Svans Doran of 
the computing staff of the langley full-scale tunnel for 
her assistance in making the calculations. 

SYMEOIS 

z  = x + iy  plane of airfoil 

t  = § + it]  plane of straight lines 

P 

9 

Ax 

Ay 

ax. 

plane of unit circle 

central angle of circle 

component of Cartesian mapping function (GMF) 
parallel to chord 

oomponent of Cartesian mapping function perpen- 
dicular to chord 

*0» Äyo particular CMP's, tables I and II 

T     displacement constant for locating airfoil 

r = 2R diameter of circle, se-nllenrth of straight line 

en = an + ll3n coefficients of series for CTF 

PN    negative of central angle of circle, corresponding 
to leading edge of airfoil 

41 
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«I 

eentral angle of circle minus 180°, corresponding 
to trailing edge of airfoil 

airfoil chord 

section lift coefficient 

velocity at surface of airfoil, fraction of free- 
streaia velocity 

velooity t.t  surface of circle, fraction of free- 
stream velocity 

V 

ds 

r 
«t 

free-stream velocity 

element of length on airfoil 

circulation 

thickness factor 

camber factor 

thickness ratio 

normalizing constant 

denominator of equation (17) 

camber, percent 

Ox,  6y incremental CMP's 

U     positive area under approximate vp(qj)  ourve 

L     negative area under approximate vp(<p)  curve 

a     angle of attack 

ax     ideal angle of attack 

r 
•t 

*a 
6 

c = (p 

e + fc. 

true potential 

approximate potential 

central angle of near circle 

e 

m 
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Subscripts: 

N      leading edge (nose) 

T     trailing edge 

a camber 

t      thickness 

o,  1, Z    successive approximation in direct or inverse 
C1!P nethods 

I - THE DIRECT POTENTIAL PROBLEM OF AIRFOIL THEORY 

TKE CARTESIAN MAPPING FUNCTION 

The Derivation of the Cartesian Mapping Function 

Consider the transformation of an airfoil, z-plane, 
into a straight line, L-plane (fig. 1).  The vector 
distance between confomally corresponding points auch 
as Pa and l'f  on the two «ontours is composed of a 
horizontal displacement Ax and a vertical displace- 
ment Ay. The quantity Ax + i Ay is only another way 
of writing the analytic function z - t;  that is, 

z - $ = U + iy) - (£ + it)) 

= (x - £) + I(y - D) 

H ax + 1 Ay (1) 

By Riemann's basic existence theorem on conforraal 
mapping, the function z - t    connecting conformally 
corresponding points in the z- and £-planes is a regular 
function of either z or £ everywhere outside the 
airfoil or straight line.  This function will be referred 
to as a Cartesian Mapping function, or CIIK.  In order to 
map an airfoil onto a straight line, the airfoil ordi- 
nates Ay are regarded aa the imaginary part of an 
analytic function on the straight line and the problem 
reduces to the calculation of the real part Ax. 
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The calculation of the real part of an analytic 
function on a closed contour from the known values of 
the Imaginary part Is well known.  It is convenient for 
this calculation to consider the straight line as con- 
formally related to a circle, p-plane, by the familiar 
transformation 

T = p +  ^ (2a) 

where the constant displacement T has been inserted for 
future convenience in locating the airfoil. For corre- 
sponding points on the straight line and the circle, 
equation (2a) reduces to 

t  = T + r cos 9 

r, = 0 } (2b) 

Considered as a function of p, therefore, the CMF z - t 
is regular everywhere outside the circle and is therefore 
expressible by the inverse power series: 

(5) 

The analogy of equation (5) with the Theodorsen-Oarrick 
transformation (reference 2) 

^ = 11^ 
1 P" 

which relates conformally « near circle, p'-plane, to a 
cirole, p-plane, may be noted. On the circle proper, 

where p = Re *,  and defining cn s % + ibn,  equa- 
tion (J) reduces to two conjugate Fourier series for the 
CMF; namely, 

AX = a0 + 
T Hn 

cos nip + >_ -£ sin n<P 
1 Rn 

(U) 
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Ay = b0 + C ?£ »oi nfl> - 2~  Sa 8ln n(P (5) 

Thes« series evidently determine Ax from oy or vice 
versa. 

An alternative method of performing this calculation 
is possible.  It is known that if the real and imaginary 
parts of a function are given by conjugate Fourier series, 
as in equations (I|.) and (5), with the constant terms 
sero, two intearol relations are satisfied.  (See, for 
example, references 2 and Jj also, appendix C.)  These 
relations are 

Ax(<p) 

&y(ip) 

2*Jo 

~2"/o 

Ay(iP') cot 9' ~ S do» 

Ax(ep') cot Si. dtp« 

(6) 

(7) 

Before the detailed application of the CMF z - t 
to the solution of the direct and inverse problems of 
airfoil theory is nade, some necessary basic properties 
of this function will be discussed. 

Airfoil Position for Given CUP 

It is noted first thfit the regions at infinity in 
the three pianos are tho sar.ia except for a trivial' and 
arbitrary translation; that is, by equations (1), (2a), 
and (3), 

lim z 
z, £-» 

£ E Ax„ + i hy„ =  c0 S a o + l*o 

lim i  = p + T 
1# p-+• 

>  (0) 

Secondly, if an airfoil is to be mapped into a 
•traight line, it becomes necessary to know the point on 
the straight line corresponding to the trailing edge of 
the airfoil.  For a given CMF,  dx(tP),  Ay(<P),  and 
straight line of length 2r located as in figure 1, 

r'^^v^"^^--^ •. 

V .. s„> 
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the airfoil coordinates 
tlona  (1) and  (2b) as 

x, 7    are obtained from equa- 

x - T + r coa C + Ax(<P) 

y = Ay(<P) 

(9) 
(10) 

The leading and trailing edges of tha airfoil will be 
taken as the points corresponding to the extremities of 
the airfoil abscissas. The corresponding locations on 
the circle are therefore determined by maximizing x 
with respect to c in equation (9).  Thus 

©r 

dx 
d<P 

sin <P 

-r sin <r + dax dip 

dAx 
r a<r (ID 

The condition (11) ylolds (usually by graphical deter- 
mination) the angles corresponding to the leading and 
trailing edges (fig. 1) 

= -6 N 

+ 9, } (12) 

It will be found convenient to so alter the position 
and scale of a derived airfoil that, for exrmple, its 
ohordwise extremities ara located at x =  ±1 and the 
trailing edge ha3 the ordinate y = 0 (to be referred 
to as the normal, foro).  The chord c of a derived air- 
foil is by definition the difference In airfoil abscissa" 
extremities, or by equations (12) and (9), 

= r(cos 3^ - cos \) + Ax(cT,) - Ax^) (15) 

The increase in scale fron c  to some des.'.red c0  is 
obtained simply by multiplying r,  Ax,  and Ay by the 
factor c0/c.  The translation necessary to bring the 
trailing edge of the airfoil to its desired location ia 
then accomplished by adjusting the translation constants T 
and b0. 
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Velocity Distribution on Airfoil 

Once the CMF Ax(ro), Ay(<P) and the diameter of 
circle r of an airfoil have been determined, the 
velocity at a point on its surface is obtained in a well- 
known manner as the product of the known velocity at the 
corresponding point of the circle and the stretching 
factor from the circle to the airfoil; that is, 

vz«P) = r g Tr(<P) (1U) 

where vp(<p) is half the velocity on the circle (since 
r = 2R) and ds is the elenent of length on the airfoil. 

The velocity on  the circle v„(^), which iaake3 the 
point 9  = Tr + ß^p corresponding to the trailing edge 
of the airfoil a stagnation point (Kutta condition), is 

Vp(ip) = jsln (<P + a) + sin (a + 3„)|        (15) 

where a is the angle of attack. The velocities vD 
and are expressed nondiraensionally as fractions of 
free-stream velocity.  The stretching factor ds/d<P is 
obtained from equations (9) and (10) as 

The velocity va(<p), equation (Ik),  therefore becomes 

vz(«P) = 
|sin (<p + a)  + sin (a +  PT^| 

V\r~d~?~      " 7       \r dqj/ 

(17) 

This equation is the general expression, in terns of the 
CMP, for the velocity at the surface, equations (9) and 
(10), of an arbitrary airfoil.  The denominator depends 
only on the airfoil geometry, while the numerator depends 
also on the angle of attack.  Equation (17) is similar 
to the corresponding expression in the Theodorsen-Garrick 
method except for the absence of the factor representing 
a preliminary transformation from the airfoil to a near 
circle. 

jfe 

5!'.'t" 

I - - £ 1 

&.i..,-. 



MM 

% 

V 

ti *., 

I 

* 

f^ 
i 

I 

.1 i 

• < 

i 

1 

1U0A Aim No. ll+K22a 

The expression» for the lift coefficient and ideal 
angle of attack nay be notod. The circulation T around 
the airfoil is (V ia free-stream velocity) 

r = kit RV sin (a + 0,r) 

The lift coefficient ct la defined by 

(10) 

\ ccjv = r 

Hence 

0^, = ii.tr E. sin (a + 8^ (19) 

where the airfoil chord c is given by equation (15). 

The Ideal angle of attack (reference 2) is defined 
as that angle of attuek for which a stagnation point 
exists at the leading edge; that la, vz = 0 for q> = -SJJ 
in equation (17)« Hence, 

ß 
«I 

N ßn 
(20) 

Superposition of Solutions 

The sum of two analytic functions is an analytic 
function; therefore, for a given p-plane circle, the sun 
of two CHF's is itself a CMK as 1- also ovldont from 
equations (k)   to (','). Thus, the CLIP'S bxx  + 1 Ay1 and 
LX-2 * 1  &7?. of tv'° component airfoils may, for the sawe r, 
be added together to ,-;lve a CVF (Axi+Ax2S*i(Ay^+Ay2) 
and thence, by equation (17), an exact velocity distribu- 
tion for a resultant airfoil.  The resultant profile and 
Its velocity distribution is a superposition in this 
sense of the component profiles find velocity distributions. 
Thus, without sacrifice of exactness and with no great 
Increase of labor, airfoils may be analyzed and synthe- 
sized in terns of nonyionent symmetrical thickness distri- 
butions and mean comber lines.  Tills result provides a 
rigorous counterpart of the well-known approximate super- 
position methods of thin-airfoil vortex and source-sink 
potential theory. 
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As a particular case of superposition, a known CI.tF 
Ax + 1 Ay may be multiplied by a constant S and the 
resulting CMP 3 Ax + IS Ay determines a new profile by 
the new displacements 3 Ax, S Ay from points on the 
original straight line.  It is evident that, except for 
the corrections  (S - 1) Ax to the airfoil abscissas, 
this new profile is increased in thickness and camber 
over the original profile by ths factor S.  The effect 
on the velocity distribution is that of multiplying the 
derivatives in aquation (17) by S.  By virtue of a reduc- 
tion in scale by the factor 1/3 this profile may also 
be regarded as obtained fron the original one by using 
the same Ax, Ay but a length of line 1/3 tines the 
length of the original one. 

The use of superposition as well as the application 
of the CMF to some particul&r airfoils will be illustrated 
next. 

Application of the CKP to Some Particular Airfoils 

Symmetrical thlcknr3a distributions.- The Cartesian 
mapping function was calculated for a symmetrical 30- 
percent thickness ratio Joukowski profile from the known 
conformol oorrespondence between a Joukowsxi profile and 
a straight line.  The Ct!F is given in normal form in 
table I. The associated constants t0 and r0 are 
given in table II and the profile itself, as determined 
either from the standard formulas or from eqratlons (9) 
and (10), is shown in figure 2(a). The symmetry of the 
profile required only the calculation of Ax(T), Ay(<J>) 
for ü ^ <P = 100°.  The corresponding velocity distri- 
bution (fig. 2(b)) was obtained from equation (17) by 
use of the computed values of the derivatives. At the 
cuaped trailing edge the velocity as given by equation (17) 
is indeterminate; however, the limiting form of equa- 
tion (17)» deternined by differentiation of numerator 
and denominator, is 

11m v = 
|cos (cp + a)| 

V\       * " r d<p2/    + \r dp2/ 

(21) 
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It ia seen from thia expression that the velocity et a 
cuspsd edge depends on  the aeoond derivatives of the 
napping function, that is, on the curvature at the ouap. 

The computed second derivatives d^4\ot/dT'", d*Ay0t/uV" 
of the CM7 of table I are plotted in fifurp 3 f°r * range 
of value3 of flp near 160°. 

The CMF's for symmetrical profiles of different 
thickness ratios v/f.re. deteminad from that for the 
Joukowcki r>:'ofilo as indicated previously In the section 
"Superposition of Solutions." The factor u* by which 
to multiply Ax0, Ayq to obtain • profile of thickness 
rctio T is obtained fron 

«t Wo- unx 

[&»(»M) - &x(ftjj) 

where Ay0 is the maximum airfoil ordinato of the known 
CMP (table I) and the denominator represent.", the semichord 
of the derived profile • The solution for uj. la 

rnT (2?-) 

,1 

Valuea of ut were calculated fron this formula for 
thickness ratios of 2I4. percent and 12 percent a.id are 
Given in table II.  Tho resulting CMP*» were thon nor- 
malised a3 lndioated in the section "Airfoil Position 
for Given OKP" 30 that the actual factors by which to 
multiply the original As0, Ay0 were ^ut. These values 
are giver in table II, together with the associated 
constants *     and r. The profiles thus determined aro 
shown in figure 2(a) and the corresponding velocity dis- 
tributions in figure 2(b). 

The derived profiles are not Joukowski profiles. 
Tho uoint of nax5rmm thickness is shifted back along the 
chord sonowhat an the thickness ratio decreases.  Con- 
versely, the point of maximum thickness would be shifted 
forward by ,;'oins from a thin Joukowski profile to a 
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thicker one.  (This result was the reason for starting 
from a thick section.)  The CMP for the 12-percent thick 
derived profile is illustrated in figure l\..     It is to be 
noted that the horizontal displacenent function ax0^(<p) 
la symmetrical about CP = it,    whereas the vertical dis- 
placement function Ayot((p)  is antisymnetrical about 
<p = IT. 

Mean camber lines.- The CMP was next calculated for 
a circular-arc prorile of 6-percent camber from the known 
conformal correspondence between a circular arc and a 
Straight line.   The normalized CM? and its derivatives 
are given in tp.ble III. The CIT is illustrated in fig- 
ure h-     The symmetry in this case is with respect to 
9  = 90° and  W = 270°,  t*e Axoc(<P)  being antisymmetrical 
and Ayoc(<r)  symmetrical.  The circular-arc mean canber 
line is shown in figure 5(a) and the corresponding 
velocity distribution in figure 5(b). 

Derived mean canber line3 were obtained from the CMP 
for the circular arc in a manner similar to thut for the 
symmetrical profiles.  The expression determining the 
factor u»  for a desired percent camber C  is 

2Jr0 cos «P,, + u0 Ax(<P.j)j 

with the solution for u~ 

u„ = 
2Cr0 cos <Pgj 

*y< 'max 
2C Ax (S> 

(23) 

The angle <PJJ in equation (23) (as in equation (22)) 
corresponds to the extremity of the derived mean line. 
Because the factor uc  is to multiply the derivative 
dAx0( <P)/dcp,  the angle <f-,    as determined by the maxi- 
mum condition (11} depends on uc.  One or two trials 
are sufficient to determine ue  simultaneously with <X, 
from equations (23) and (11) for a given desired camber C. 
Values of uc  and <p.,  (also  CBp by symmetry) are 
given in table IV for derived cambers of 3 and 9 percent. 
The actual multiplying factor to obtain the derived 
CMF's in normal form is given in table IV as kuc. 
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. The derived comber lines are shown in figure 5(a)- 
It ia seen that the derived camber lines have been 
separated into distinct upper and lower surfaces. Fur- 
thermore, for the 9-percent camber line the "lower" 
surface, that is, the surface corresponding to the lower 
part of the straight line or circle, lies above the 
•upper" surface. Although such a camber line is physi- 
cally Meaningless by itself, nevertheless its CMP can be 
compounded with that for a thickness distribution to give 
a physically real result (if the resultnnt profile is a 
real one). The velocity distribution of the 5-percent 
camber line is given in figure 5('o)> The ''velocity dis- 
tribution" of tne 9-Percent camber lino is included in 
figure 5(b) 1'01' arithmetical comparison although it i3 
physically meaningless for the reason Just mentioned. 

The velocities at the cusped extremities of the 
camber lines are given by equation (21). The second 
derivatives of the CMP of table III were computed. They 
are plotted in figure 3 as d2Ax00/d(p

2, d2Ay0C/d<p
2 for 

a range of c near lSo°.  These second derivatives, in 
combination with those for the symmetrical profile, can 
be used to give a more accurate determination of the 
velocity at and near a cusped trailing edge than is 
obtained by using equation (17) near the trailing ed;je. 

Combination of synr.ietrlcal profile and mean ce 
.- The CMF's dei'ived for the symmetrical proi'I] 

       ^____  member 
line.- The CMF's dei'ived Tor the symmetrical profiles and 
for the mean camber lines can now be combined In vsirying 
proportions to produce airfoils having both thickness 
and camber.  These airfoils may be useful In themselves 
or, as in the following sections, may be used as initial 
approximations in both the direct and invarse processes. 

As an illustration of such combinations, the CMF 
of the 12-porcent thick symmetrical profile of fi;*ure 2(a) 
and the CMP of the 6-percent camber circular arc of 
figure 5(a) were added together. The airfoil profile 
thus determined Is shown in figure 6(a). r'or comparison, 
the airfoil obtained in the manner of thin-airfoil theory 
(see,for example, reference Ij.) by superposition of the 
same symmetrical profile and a 6.5-percent camber cir- 
cular arc (in order to duplicate the camber of tho exact 
airfoil more closely) la indicated in the figure. The 
velocity distribution of the dotted airfoil should, 
according to thln-airx"oil theory, be the sum of tho 
symmetrical-profile velocity and the increment above the 
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free-stream value of the camber-line velocity. This 
velocity distribution, determined from the two component 
exact distributions at zero angle of attack, is shown 
dotted in figure 6(b). The exact velocity distribution 
of the "exact" airfoil of figure 6(a) was determined 
for the same lift coefficient (ct = 0.63, a = 1°15«) 
from the known CHP. This distribution is shown in 
figure 6(b). The two velocity distributions differ ap- 
preciably, although in the directions to be expected 
from the differences in shape of the corresponding air- 
foils. 

It appears that the CWs of a relatively small 
number of useful thicknesn distributions and comber lines 
would suffice to yield a large number of useful combi- 
nations of which the (perfect fluid) characteristics could 
be determined exactly and easily in the manner indicated. 

The superposition of solutions can also be used with 
the airfoil mapping methods based on the confornal trans- 
formation of a near circle to a circle.  There is a 
decided advantage, however, in working with the airfoil 
ordlnates directly, both in the facility of the calcula- 
tions and in the insight that is maintained of the rela- 
tionship between an airfoil and its velocity distribution. 

THE DIRECT POTENTIAL PaOBLSM FOR AIRFOILS 

The direct problem for airfoils is thr.t of finding 
the potential flow past a given arbitrary airfoil section 
situated in a uniforn free stream. This problem can be 
solved by a CHIP method of successive approximation some- 
what similar to that in reference 2. 

Method of Solution 

Suppose an airfoil to be given as in figure 6(a). 
The chord is taken as any straight line such that perpen- 
diculars drawn from its extremities are tangent to the 
airfoil. For example, the "longest-line" chord, that is, 
the longest line that can be drawn within the airfoil, 
satisfies this definition. The x-axi3 is taken along 
this chord end the origin is taken at its midpoint. 
Suppose, in addition, an initial CMF &x0 and Ay0, 
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straight line r0,  and chordwiss translation constant T0 

to be given such thet the corresponding airfoil has the 
sane chord and la similar in shape to the given airfoil. 
(At the worst the Initial airfoil could be the given 
chord lire itself.) 

At the chordwise locations x0(cp) of the initial 
airfoil, corresponding to an evenly spaced sot of  Ca- 
valries by equation (9), the differences 6y^(<P)  between 

the ord-.nates Ay^(<P) of the given airfoil and Ay (fl>) 
of the initial ali'foil are measured. The ordir.ate dif- 
ferences Gy-j^Cp) deternlne a conjugate set of abscissa 
corrections 6x^(rp) In accordance either Y/lth equa- 
tions (k) and (5) or equation (6). The details of this 
calculation are ,jiven in appendix A. 

The initial semilength of straight lino r0 corre- 
sponding to the initial airfoil is then corrected to  r-,, 
and the translation constant TQ adjusted to T^#  B0 
that the use of r^ with the first approximate CMP 
Axn = Ax0 + flxj_, L"i -  Ay0 + öy-^ yields a first approxi- 
mate airfoil of which the ohordwise extremities coincide 
with those of the given airfoil.  This correction is 
described in detail presently.  If the first approximate 
airfoil is not satisfactorily close to the given airfoil, 
the procedure la repeated for a second approximate air- 
foil, and so on.   The successive airfoils thus deter- 
mined provide a very useful critarion of convergence to 
the final solution; nai.iely, the given airfoil. Evidently, 
the fundamental relation between an airfoil and Its 
mapping circle 

°1  °2 
?    P2 

can be used in the manner indicated to effect directly 
the transformation of an airfoil into a circle.  It 
appears preferable, however, to subtract R^/p from the 
second term on tha right and thence to introduce the 

straight-lino variable £ = p + V- 
The exact velocity distribution of any of the 

"approximate" airfoils (hence the approxinato velocity 
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distribution of the given airfoil) may be obtained from 
equation (17) using the derivatives of the corresponding 
CMP.  The zero-lift angle Pip to be used in equation (17) 
is determined for each approximate airfoil along v/ith the 
corresponding correction for r. 

The correction for r is necessary because if the 
chordwise locations of the first approximate airfoil were • 
computed by equation (9) with the original values of r 
and T,  Axnjcp) being used inste.-.d of ix0(<J>), the re- 
sulting chordwise extremities would in general not be at 
x = ±1.  It is therefore necessary to adjust r0 and TQ 

auch that with the derived Axj_, Ayj.f 

(2k) 
xK**i) 

where «Pjj  and <Ap  are the angles on the circle corre- 

sponding to the extremities of the desired airfoil. This 
operation was mentioned in the section "Superposition of 
Solutions." It may be termed a horizontal stretching of 
the given airfoil.  The condition given by equations. (£1).) 
applied to equation (9) yields 

1 = Ti + rj^ cos ep„ + Ax! 

1 = TX + n cos <PTl + Ax?/QT \ j 
(25) 

Subtraction of the second of these equations from the 
first gives for r^ 

&xl(%) - ixi(°n Ö 
1 

2 

COS    «J^    - COS    CPfp- 
(26) 
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Addition of equations  (25) gives for   T^ 

cos <PNl + COB TTl      A*(<PJ?1) + IXlfyJ 
Tl = (27) 

The angles (fy  and 4W  In equations (26) and (27) 

correspond to the extremities of the desired airfoil. 
They are given by graphical solution of equation (11) 

sin 9 
dAx-t (q?) 

r^ d<p (11) 

Equation (11) must bo rolved simultaneously with equa- 
tion (26) for rj_, V[T , and *ji, • In practice only a 
few successive trials are neoessnry. Thence T.  is 

obtained by equation (27). The angle flpL  determined In 

this process is equivalent to the zero-lift angle of the 
airfoil, equation (12). 

Illustrative Example of Dir"eot Method 

As a numerical Illustration cf the direct method the 
velocity distribution of the NACA 6^12 airfoil was cal- 
culated.  In order to obtnln an initial airfoil, the CMF 
of the 6-percent camber circular arc (tables III and IV) 
was added to the CMF of the 12-percent thick syrametrical 
profile, darlved from that of table I as indicated in a 
previous section. Before this addition was made, the 
CMP for the circular ure was Increased in scale (multi- 
plied) by 1.0928/1.0072 to correspond to the sane length 
of straight lino r ae the symmetrical profile GIT. The 
normalized resultant CUP  and the associated constants are 
given in tables V(a) and VI, respectively.  The initial 
airfoil i3 shown in figure 7(a). 

The given airfoil, K^CA 6512, was so rotated through 
an angle of -0.88° (nose dovm) as to be tangent to the 
Initial airfoil at the leading edpe. The convergence 
near the leading edge was thereby accelerated. The given 
airfoil is shown in this position in figure 7(a). Two 
approximations were then carried out in accordance with 
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the procedure given In the preceding section. The numeri- 
cal results are given in tables V and VI. The first 
approximate airfoil is indicated by the circles in fig- 
ure 7(e)» the second approximate airfoil was indistin- 
guishable to the scale used (chord = 2'J in.) from the 
given airfoil. -The velocity distributions of the Initial, 
first, and second approximate airfoils are given in fig- 
ure 7(b), together with those corresponding to one 
approximation by the Theodorsen-Garrlck method (refer- 
ence 5). The second approximation velocity distribution 
differs appreciably from thut of the Theodorsen-Gurrlck 
method on the upper aurft.ce but agrees fairly woll on the 
lower surface.  The discrepancy for the rearmost 'j  percent 
of chord on the lower surface appears to be due to lack 
of detail in this region in the Theodorsen-Garrlck cal- 
culation. 

The convergence of the CMP Method is seen to be 
rapid, considering the approximate nature of the initial 
airfoil, although two approximations are required for a 
satisfactory result.  The second approximation could 
probably have been made unnecessary by suitably adjusting 
the first increment fiy^cp) near the leading and trailing 
edges on the upper surface beT^re calculating 6xi(CP). 
The direction in which to adjust the increment is obtained 
by comparing the thio!:ncas of the initial airfoil with 
that of the given airfoil In these regions.  Because a 
thicker section has a greater concentration of chordwise 
locations toward the extremities, for a given set of 
<P points, than does a thinner section, the chordwise 
stations would be expected to be shifted outward as the 
thickness of the section is increased. The ordinates 
Ay^(<P)  should therefore have been chosen at chordwise 
stations slightly more toward the extremities than those 
given by equation (9). 

The accuracy of the velocities is estimated to be 
within 1 percent. It was expected, and verified by pre- 
liminary calculations, that the results would tend to 
be more inaccurate towerd the extremities of the airfoil 
than near the center. This result is evident from equa- 
tion (17). A given inaccuracy in the slopes dix/dop and 
dAy/dqp can produce a large error in the velocity near 
the extremities, where sin <P approaches zero.  This 
disadvantage does not appear in the Theodorsen-Garrlck 
method, in which sin cp  is replaced by one.  Excessive 
error in these regions can be uvoided in various ways. 
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If the initial airfoil, fop which the slopes d&x0/d<P 
and dAy0/dq> have presumably been computed accurately, 
is a good approximation in these regions, as evidenced 
by the smallness of öx^,  6y^ compared to Ax0,  Ay0, 
the effect of inaccuracy of the slopes d6X]/d<p, döyj/dfp 
will be reduced, since they are added tc the initial 
slopes dAx0/d<P,  dAy0/d<J>.  It was to reduce the magnitude 
of the incremental CMP near the loading edse that the 
1IACA 6512 airfoil wa3 drawn tangent to the initial air- 
foil in this region. 

The error in the deriv«tives can also be avoided by 
computing them fro«: the differentiated Fourier series 
for flx-p  öyj.  (See appendix H.)  This calculation was 
made in the illustrative example, after it was found that 
an error of about 5 percent in the velocity on the upper 
surface leading edge could be caused by unavoidable 
inaccuracy in measuring the incremental slopes. 

The fact that the computed derivatives do not repre- 
sent the derivatives of the CKF but rather the deriva- 
tive of its Fourier expansion to a finite number of 
terms nay introduce inaccuracy.  (The derivative Fourier 
series converges more slowly than the original series.) 
A comparison of the cenputed derivatives with the measured 
slopes will indicate the limits of error, however, as well 
as the true derivative curve. 

The importance of knowing the CI.1P derivatives ac- 
curately may make it desiruble to solve the direct 
problem from the airfoil slopes, rather than from the 
airfoil itself, as given data.  Thi3 variation of 
technique enables the CMP derivatives rather than the 
CUP Itself to be approximated initially.  Further 
details are Riven in reference 1. 

II - THE INVERSE POTENTIAL PROBLEM OP AIUPOIL THEORY 

The inverse potential problem of airfoil theory may 
be stated as follows:  Given the velocity distribution 
as a function of percont chord or surface arc of an unknown 
airfoil - to derive tho airfoil.  Before the questions of 
existence and uniqueness of a solution to the problem as 
thus stHted are discussed, several CMP methods of solu- 
tion will bo outlined and illustrated by numerical 
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examples. Various previous methods of solution will then 
be described briefly and their inherent limitations and 
restrictions on the prescribed velocity distribution will 
be compared with those of the CMF methods. 

The prescribed velocity distribution is assumed to 
be either a double-valued continuous function of the 
percent chord or a single-valued continuous function of 
percent arc. (Isolated discontinuities in velocity are, 
however, at least in the percent-chord case, admissible.) 

CMF Method of Potentials 

This inverse method is based on the fact that, if 
the airfoil and its corresponding flat plate and circle 
are immersed in the sane free-stream flows and have the 
same circulation, conformally corresponding points in 
the three plane3 have the sane potential. 

Consider first the case where a velocity distribu- 
tion corresponding to a symmetrical airfoil at zero lift 
Is specified as a function of percent chord. If an 
Initial airfoil is assumed, the prescribed velocity can 
be integrated along its surface to yield an approximate 
potential distribution as a function of percent chord. 
This potential increases from zero at the leading edge 
to a maximum value at the trailing edge. Of fundamental 
importance to the success of the method is the fact that 
this potential curve depends mainly on the prescribed 
velocity distribution and only to a much lessor extent 
on the form of the initially assumed airfoil. The chord 
line of the initial airfoil taken as the x-axis is next 
sufficiently extended that, in the same free-stream flow 
as for the airfoil, tho potential, which in this case 
is simply V£, increases linearly from zero at its 
leading edge"to the same maximum value at the trailing 
edge as exists for the approximate potential curve derived 
initially. Horizontal displacements Ax betv<een these 
curves are then meaEurad as a function of the straight- 
line abscissas and, hence, as a function of the central 
angle <p of the circle corresponding to the straight 
line. These horizontal displacements 6x(<T), together 
with the conjugate function &y(<p) computed therefrom 
and the length of straight line previously determined, 
constitute a CMF for an airfoil that is a first approxi- 
mation to the unknown airfoil. The approximation is 
based on the use of a more or less arbitrary initial 
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airfoil to set up the first approximate potential. The 
exact velocity distribution of the derived first approxi- 
mate airfoil can now be computed and compared with the 
prescribed velocity.  If the agreement is not  satisfac- 
torily close, the procedure is repeated, with the airfoil 
Just derived taking the place of the one initially assumed. 

The complication introduced in the general case in 
which the prescribed velocity distribution corresponds 
to an unsymmetrical airroil with circulation can be 
resolved as follows:  It is convonient in this case to 
discuss the potentials in the circle plane.  The pre- 
scribed velocity distribution is transferred to the circle 
plane by means of the stretching factor, presumed known, 
of th'i initially assumed airfoil; tV.at is, equation (li;) 
is solved for vr)(0). The first approximate potential 
distribution as a function of the central anirle <P is 
obtained by integrating Vp(<p) through a <P-range of 2tr 
radians (around the airfoil), starting from the value 
of <P    near zero for which vp(o)  ia zero (the front 
stagnation point).  This approximate potential curve has 
a minimum value of zero at the front stagnation point, 
rises to a maximum for the value of 9 near TT corre- 
sponding to the rear atngnntion point, then foils to a 
minimum for the final vnlue of <P (tho front stagnation 
point), which is ar. anßle 2TT radians from the starting 
<p-point.  The difference between the final and the initial 
potential rainimums is a first approximation to the circu- 
lation r. 

A circle of such diameter is now derived which, with 
this circulation und the same free-stream flow as for the 
airfoil, yields a potential distribution (henceforth celled 
true potential distribution) that has the same maximum 
and minimum values as the approximate potential curve 
Just derived.  If the maximum approximate potential is 
denoted by rQU and the decrease of potential (considered 
positive) from the maximum to the final value by rcL, 
where r0 is the diameter of the circle corresponding 
to the initial airfoil, the parameter y ls first com- 
puted from 

U 

2(Y + cot Y)  U  + L 
(28) 
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by means of figure 8. The desired diameter r is then 
Biv given by 

* = r 
r0(U + L) 

[(.(009 y + y sin y) (29) 

The parameter y is actually the sum of the angle of 
attack and zero-lift angle of the unknown airfoil, to a 
first approximation; that is, 

= a + ß T (30) 

It is related to the circulation V    by equation (18). 

This procedure for the calculation of the diameter 
(see, for exai&pla, reference 6) follows easily from the 
expression for the potential distribution on a circle, 
obtained by integration of equation (15) as 

«/•AT ' 
d«J> 

= r0 (cos y+ Y sin y- 00s JP*+ a) + («J> + a)sln y|  (31) 

If the diameter r of the derived circle is much 
greater than the diameter r0 of the circle corresponding 
to the initial airfoil, it la desirable to increase the 
CMP Ax0, Ay0 of the Initial air-foil by a factor suffi- 
cient to mod'.fy the initial airfoil such' that it corre- 
sponds to a circle of diwneter r.  A new approximate and 
true potential distribution is then obtained as described 
but by using the modified initial airfoil. 

The first approximate horizontal displacement func- 
tion is now determined ts the sura of the horizontal 
displacement &x0(<P) corresponding to the (Modified) 
initial airfoil and an increment 0X1(a>) produced by 
the noncoineidence of the approximate potential distri- 
bution ftft and  the true potential distribution <Sfc. 
This horizontal increment way be measured between the 
two potential curveä, both considered plotted against 
chordwise position in the physical plane. With sufficient 
accuracy this increment may be computed as the vertical 
distance between the potential curves divided by the 
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slope of the approximate potential curve; namely, the 
prescribed velocity vz. If, therefore, all quantities 
are considered as functions of <P 

A*! = Ax0 + öxj 

= ax0 + 
V») - °t(*) 

vz(<P) 
(52) 

The ordinate function AyjtCP) conjugate to Ax^t*) 
can now be computed and, together with Ax^(9) and the 
diameter r obtained previously, determines the first 
approximate airfoil by equations (9) and (10).  Calcu- 
lation or measurement of the CMP derivatives dAx^/d?1, 
dAy^/d(? and the use of equations (11) and (17) then 
determine the zero lift angle ß_ and the exact velocity 
distribution of the first approximate airfoil. The angle 
of attack, to a first approximation, is given by equa- 
tion (JO), the value of y    derived from equation (23) 
being used. This exact velocity distribution is compared 
with that prescribed and, if the agreement is not close 
enough, the procedure can be repeated with the first 
approximate airfoil as the initial airfoil. 

In the case where the prescribed velocity is speci- 
fied as a function of percont arc, then by lino integra- 
tion of the prescribed velocity along the percent arc, 
the true potential distribution of thn unknown airfoil 
is known a3 a function or  arc (except for a trivial scale 
factor). The maximum and minimum values of this potential 
distribution then remit the unique determination, by the 
calculation previously described, of the circle corre- 
sponding confornnlly to the unknown airfoil.  Correlation 
of the potential distribution of this circle with the 
potential distribution as a function of are initially 
calculated therefore yields exactly the potential distri- 
bution of the unknown airfoil a3 a function of the central 
angle <p of the circle.  This fact has been noted by 
Gebeleln (reference 6), The calculation of the diameter r 
as outlined above for the percent-chord case is thus 
unnecessary. The remainder of the procedure is the sane, 
the successive approximate airfoils now being adjusted 
to correspond conformaily to this circle, before corre- 
lating their percent-arc lengths with the prescribed 
velocity distribution in preparation for the next 
approximation. 
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The successive contours determined by the method of 
potentials are, of necessity, closed contours, whether or 
not the sequence of contours converges to a solution 
satisfying (mathematically) the prescribed velocity dis- 
tribution. The closure of the contours is a consequence 
of the method of setting up the horizontal displace- 
ments, Ax(o),  and solving for Ay(<!>), by which the 
contour coordinates are obtained a3 single-valued func- 
tions of <P. The necessity for closed contours doea not, 
however, exclude the possibility of deriving physicully 
unreal shapes; nar.-ely, contours of figure-eight type. 
Thl3 point will be diacvjaaeu at greater length later but 
it may be remarked here that it is the extra detjreo of 
freedom introduced by tho class of fifure-eight type 
contours that adr.it3 the possibility of a unique solu- 
tion to the inverse problem tr"Utod Lore. 

It will have been noticed that, v.hereas in the direct 
method a Ay is deternlned fron the given data - that is, 
the airfoil - and a Ax is computed therefrom, conversely, 
in the inverse nethod of potentials a Ax is deternlned 
from the given data - that i3, the velocity distribution - 
and a Ay is computed therefrom.  Similarly, just aa 
the direct problem can also be solved by deriving dAy/d<P 
from the ftiven airfoil slopes i>r.A  thence computing 
dAx/d<r, so, conversely, cnti tho inverse problea be solved 
by deriving d£x/d$ fron the prescribed velocity dis- 
tribution and thence computing dAy/d<P.  This inverse 
method of derivatives will bo discussed after some 
numerical examples are presented, illustrating tho method 
of potentials. 

Examples of CMF Method of Potentials 

Symmetrical suction.- The method ©f potentials was 
applied first to tho derivation of the symmetrical profile 
corresponding to the prescribed velocity distribution 
Shown in figure 9(a). As an initial airfoil the 12- 
percent thick profile derived frcm the 50-percent thick 
Joukowskl profile in part 1 was usod. The initial Ot.3' 
and associated constunts fire Riven in tnble VII.  The 
initial airfoil and its velocity distribution aro shown 
In figure 9» The first increment CMF and the resultant 
first approximate airfoil and its exact velocity distri- 
bution were calculated by the procedure of the preceding 
section.  Tile incremental slopes döx^/d«?,  döy^/dcp 
were computed and found to approximate the «ensured slopes 
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very closely. The results are presented In table VII 
and figure 9. It la soen that the change In velocity 
and profile accomplished by one step of the inverse 
process Is large; that Is, the convergence Is rapid. 
The high velocity cf the first point on the upper surface 
(<P = 15°) Is due to lack of detail in the calculation. 
(Twelve points on the upper surface were calculated.) 
For pructi-jril purposes the nose could be easily modified 
to reduce this velocity if desired without Going through 
a complete second approximation. 

Hean camber line for uniform velocity increment.- 
Aa a 3econd example of the inverse CMP method, the profile 
producing uniform equal and opposite velocity increments 
on upper and lower surfaces was derived. By the methods 
of thin-alrfoil theory this velocity distribution yields 
the so-called logarithmic camber line. The prescribed 
velocity distribution is indicated in figure 10(a). The 
velocity peaks at the extremities of the prescribed 
velocity curve were assumed in order to compensate for 
an expected rounding off of the velocity in this region 
in working up from the initial velocity distribution. 
The convergence to the prescribed uniform velocity dis- 
tribution would thereby be accelerated. The initial 
airfoil was taken as the 6-percent camber circular arc, 
discussed in part T. The initial CMP and its associated 
constants are given In tables III and IV. The circular 
arc and Its velocity distribution are shown in figure 10. 

A first approximation was calculated as outlined in 
the previous section. A numerical difficulty appeared 
In the process of solving equation (11) for the aero- 
lift angle of the first approximate airfoil. It appeared 
that a 2l4.-p03.nt calculation (12 points by symmetry} did 
not give sufficient detail in the range TT < cp < li ir 

to yield a reliable solution of equation (11) for the 
zero-lift angle. This result was a consequence of the 
prescribed velocity discontinuity et the extremities with 
the consequent larpe but local changes in CI1F and profile 
shape required in thene regions.  The solution obtained 
for the zero-lift angle was &m = 6.1°, which by equa- 
tion (19) with r = l..:)0l)3 and ax = 0 yielded 
cj = O.67. The desirsd c,, however, is 0.80, which 
would correspond to Pm = 7.27°• It w/is considered 
that a relatively minute change in the shape of the 
extremities of the derived camber line would alter the 
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slope d&Xj/dq) in the desired range sufficiently to 
yield a zero-lift angle of BT = 1.2.7°.    On the other 
hand the effect of such a local change on the CMP as a 
whole would be snail. The velocity distributions of the 
derived profile were therefore computed for both zero- 
lift angles quoted previously. 

The results are given in table VIII and in figure 10. 
Included for comparison in figure 10(b) (vertical scale 
magnified) is the logarithmic mean line of thin-airfoil 
theory, computed for -\ -  0.80. The velocity distri- 
bution of the derived shape as calculated for the desired 
lift coefficient of c< = 0.80  is seen to be a satis- 
factory approximation to the desired rectangular velocity 
distribution.  The profile itself is seen to be one of . 
finite thickness as compared with the singlo line of 
thin-airfoil theory. Airfoils obtained by superposition 
of this type of camber line with thickness profiles would 
therefore be increased in thickness over that of the 
basic thickness form. 

The changes in velocity distribution and in shape 
of profile are again seen to be large; that is, the con- 
vergence was rapid.  As is to be expected, the rapidity 
of convergence of both the direct and inverse methods in 
comparable cases is about the same. 

CMP Method of Derivatives 

Instead of approximating by the method of potentials 
to a CMP that, when differentiated, yields the prescribed 
velocity, the CMP derivatives may be obtained directly. 
The controlling equations are equations (17)» (9), and 
a modification of equation (7)« Lcatlon of equation lyj• 

Isin  (ro +  a)  + sin  (o. + 
v8(cp)  = • v M 

dAx 
dtp Vr dqv 

(17) 

day _ -*r d&x 
d<p» 

cot *& _"•' ^ d«p' (7a> 
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£ = cos (p + i Ax(gi) 
r r 

27 

(9) 

These equations, together with the auxiliary equations (11) 
and (18), constitute a set of simultaneous equations from 
which the CMF derivative dAx/dp may be determined from 
a prescribed velocity distribution v2. The corresponding 
airfoil is determined by integration of dix/dcp and its 
conjugate düy/db. 

Consider first the ease where the velocity is speci- 
fied as a function of percent arc. As axplained in the 
previous section, the constants r and y    of the final 
circle corresponding to the unknown airfoil can in this 
case be determined initially. Points of equal potential 
along tho arc and circle are then found, which yield vz 
as a function of qp. The angle of attack a    in equa- 
tion (17) is taken as sorae reasonable value and dAx/r d$ 
determined by successive approximation.  In the first 
approximation dAy/r d«p may, for example, correspond to 
some known CMP. Equation (17) is then solved for 
dAx/r dip, for which the conjugate dAy/r dCP is calcu- 
lated next and used as a basis for a better determination 
of dAx/r dp. The airfoil corresponding to any approxi- 
mation is obtained by integration of dAx/dflp and its 
conjugate dAy/dq>.  (The nethod of derivatives nay be 
regarded as based on tho use of the function 

ip 
d(a - I) 

dp 
the circle 

reduces to 

This function ia regular everywhere outside 

p - Re    , approaches zero at infinity, and 
dAx 
Q<P 

i Säz 
dm on the circle itself. ) 

In general the dAx/d<P as determined in any approxi- 
mation will have an average vnlue other than zero.  The 
Ax(tt>) obtained, say, by integration of its Fourier 
series would therefore contain a term proportional to G> 
in addition to a Fourier series. Thus,  Ax(<P) would 
not be a single-valued function of q> ar.d tho resulting 
contour would not close. Siuply subtracting the average 
value of dAx/dcp (the constant term in its Fourier series), 
however, will close the derived contour.  If the method 
converges, this average value approaches zero in the suc- 
cessive approximations. 

A preliminary over-all adjustment of an initially 
chosen CMP may be desirable. Thus, If dAXj/d«P Is 
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calculated In terns or the d&y0/&Q    of a previous approxi- 
mation and Is found to be larger than dAx0/d<p by some 
factor,  dAy0/dq> can be multiplied by this factor and 
the calculation of dAx^/dq) repeated. 

Although the angle of attack may be arbitrarily set 
Initially In this calculation it should be so chosen that 
the final airfoil will coincide approximately in position 
with the initial airfoil.  After each calculation of 
dAx/ckp,  the zero-lift angle 0T can be calculated, 
aquation (11), which thereupon fixes 
Is known. 

since y= a+ ß. 

If the prescribed velocity distribution is speci- 
fied as a function of percent chord,  vz($>)  must be 
determined in the successive approximations by use of 
equation (9). The quantity f +  3- may be deter- 
mined in each approximation as in the method of potentials 
or, in physically real cases, by equation (19).  The 
diameter r is so determined that the successive airfoils 
are of a standard chord length. 

It is evident from the structure of equation (17) 
that near the airfoil extrenities where sin flP—> 0, and 
in particular at the nose of the airfoil where dAy/d(p 
is comparable to dax/dqp in magnitude, the convergence 
by this method (and by the method of potentials) will be 
comparatively slow.  If modifications to the airfoil only 
in the immediate neighborhood of the nose are required, 
it may be more expedient to apply a preliminary Joukowski 
transformation, that is, to use these methods with the 
Theodorsen-Garrick transformation. 

An example of the use of the CMP method of deriva- 
tives to solve an inverse problam is given in reference 1 
for the case of a cascade of airfoils. 

Method of Betz 

In the inverse method of Betz.(reference 7) an air- 
foil and its velocity distribution are assumed known 
(fig. 11) and a desired velocity is specified as a func- 
tion of percent arc.  The new velocity and length of arc 
are specified in such u way that the extremities of 
potential are the same as on the known airfoil. . Both 
known and unknown airfoils then transform into the same 
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circle end, in particular, the velocities et points of 
equal potential on the two profiles can be found. 

In order to determine the profile corresponding to 
the new velocity, the complex displacement Zg * zl 
between points of equal potential on the two profiles is 
expressed as e function of the corresponding complex 
velocities (denoted by vz) thus. 

air (z2 " 2l) dZn 
1 = 

dw/ds 
dw/dz^j 

1- 1 = - 1 

Hence 

--i-rfä-1) dz-, (33) 

where the integration is carried out elong the known pro- 
file from the trailing edge, which is taken es coincident 
for the two eirfoils, to the point 
function vz rr 

The complex 

known retio 

is determined epproximetely from the 

corresponding to the points of equal 

potential by the argument that, inasmuch as the two pro- 
files have nearly the same slope at corresponding points. 

the real pert of 
'*2 

1  is given by - 1. (This 

assunptlon, like the ppproximations in the CMF methods, 
is least valid at the no3e of the airfoil.  The function 
z2 " zl *s in f£öt s Cartesian mapping function.) The 
imaginary part is then computed as the conjugate function, 
equation (7). 

In addition to the restrictions on the velocity dis- 
tribution mentioned initially, further conditions must 
be met in this method, if closed contours are to be ob- 
tained.  Thus, the condition for closure of contour, 
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and the required coincidence of vz_ and vz. at 

infinity, load to the following three restrictions on 
the real part R(ef>) of the integrand in equation (3I4.) 
considered as a function of <p in the circle plane, 

2tr nZrt rizit nZn 
I     R(c)ckp = /     R(<p)  cos  oäSf- \     R(<P)  ain <pd<P=0      (35) 

Jo Jo Jo 

Method of Woinig and Gfebelein 

The method of Weinig and Gebelein (reference 6) nay 
be described essentially as follows: The given data are 
the same as in the Bet?, method. Consider the function 

log r-£ = log 
zl 

i(ß z2 o (56) 

where ßz and ß_  are the slopes at corresponding 

points of the two airfoils (fig. 11). Since |vZ2|  and 

|vz.|  are known functions of <?    with the data as given. 

and since lor 
'"1 

is regular outside the circle, 

B_ - ßzi  can be calculated as the function conjugate to 

H% The angle ßz  being known,  ßz_ is thereby 

determined and hence, by simple integration, the unknown 
airfoil coordinates are obtained. 

As in the Betz method, the condition for closure of 
the desired contour 

leads to the additional restrictions on the prescribed 
velocity distribution, 
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^ r ioß|vz(o)|d<p = o 

i p2tr 

i  |        log|vz(<p)| sin v dqp = -aln 2y 
"Jo 

1 P2Tr 

(58) 

d<p s -ir(l - cos Zf) 

where f    is given by equation (30). 

Discussion of the Various Inverse Methods 

The methods of IJntz and of Yteinie-Gebeleln may be 
somewhat narrower in scope than tho CKP nethods.  The use 
of aappinn; functions such fts in equations (53) &nd (56) 
Is based on the ability to specify dZg/dz-L unambiguously 
in the corresponding regions.  This requirement appears 
to restrict the contours obtainable b? these nethods to 
those bounding simply connected regions, l'urther investi- 
gation of this point is necessary, however.  By the CKF 
nethods, figure-eifrht contours have arisen in the course 
of solution of both the direct ard the inverse problems. 
(See the ^-percent cumber derived moan line (fie- 5(a)) 
and the illustrative examples in rsforenoe 1.)  Such con- 
tours wsre first encountered as preliminary results 
(unpublished) in usin^ the Method of potentials with the 
Theodorsen-Garrick transformation.  The CISF  apparently 
makes no fundamental mathematical distinction between simply 
connected tnd ficure-eight contours, for although z - J 
must be a single-valued function of z, J,  or p,  the 
coordinate z itself is of the same character as t     and 
the latter has tv.o Rienann sheets at its disposal in 
consequence of the Joukowski transformation from the J- 
to the p-plane. 

The methods of Betz and of Y/elnlß-Gebeleln require 
the numerically difficult cloaure conditions tequations (55) 
and (3E)) to be satisfied in advance.  If the nethod3 are 
worVced through for prescribed velocity distributions 
which do not satisfy these conditions, it appears that 
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open contours result. In the CMP methods, however, there 
Is either no closure condition (method of potentials) or 
a numerically simple one (method of derivatives): r dAx dtp 

d<P = X 2TT «• 

(ip 

frhlo simple closure condition in the method of deriva- 
ives is fundamentally n consequence of the fact that 

th« required absence of the constant tern in the inverse 
power series for the CUP derivative mapping function 

' ' " •', mentioned previously) automatically ex- 

cludes the inverse first powor (the residue term) from 
the power series for d(z - J)/dp.J  thus, physically 
Impossible velocity distributions "lead to open contours 
in the Betz-Weinig-Gebelein methods and to figure-eight 
contours in the CMP methods (if the latter converge). 
Prom the practical point of view in these cases, it may 
be easier to obtain the airfoil corresponding to the 
"best possible" physically attainable velocity distri- 
bution by the CMP methods than by the others.  If the 
succession of airfoils deteruined by an inverse CMP method 
is seen to tend toward the development of a figure-eight, 
the successive approximations can be stopped at the "best 
possible" physically real airfoil. 

As to tie existence and uniqueness of a solution to 
the inverse problem as stated, a rigorous discussion of 
the solutions, for a prescribed velocity distribution, 
of the controlling equations (17), (7a), and (9) is 
lacking. Por physically possible velocity distributions, 
however, specified as a function of percent arc, the 
Weinig-Gebeleln method shows that thero is one and only 
one airfoil as a solution.  If, however, the velocity is 
specified as a function of percent chord, some further 
condition is necessary.  This requirement is evident from 
the fact thfit one velocity distribution for an airfoil 
can, for differently chosen chords, be expressed 83 a 
different function of percent chord in each case. One 
chord with a given velocity as a function of percent 
chord can therefore have r.iore than one corresponding 
airfoil. There is reason to suppose that the further 
condition for uniqueness of solution in this case is, 
the chord being defined as in the section "The Direct 
Potential Problem Tor Airfoils,'1 that the ordinates to 
the airfoil at the chordwise extremities be specified. 
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From the experience with the CMP methods gained to 
date, it is believed that to a vclooity distribution 
specified as at the beginning of part II, and with the 
further condition mentioned in the percent-chord case', 
there corresponds one and only one olosed contour satis- 
fying the CMF system of emotions.  It is furthermore 
believed that the CMP methods are flexible enough to 
converge to this solution in at least thoso cases of 
aerodynamic interest. 

CONCLUSIONS 

' 1. The conformal transformation of an airfoil to 
a straight lino by the Cartesian mapping function (CMP) 
method results in simpler numerical solutions of the 
direct and inverse potential problems for airfoils than 
have been hitherto available. 

2.  The uso of superposition with the CMP method 
for airfoils provides a rigorous counterpart of the 
approximate methods of thin-airfoil theory. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautios 

Langley Field, Va. 
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APPENDIX A 

THE CALCULATION OP CONJUGATE FUNCTIONS 

BY THE RUNGE SCHEDULE 

The basic calculation for the type of mapping func- 
tion treated in this paper and in reference 2 consists 
of the computation of the real part of an analytic func- 
tion on a circle, given the imaginary part, or vice 
versa. To this end the conjugate Fourier series, equa- 
tions {h)  and (5), or the conjugate integral relations, 
equations (6) and (7), are available. This type of cal- 
culation appears to be fundamental in many kinds of 
two-dimensional potential problems. For example, the 
solution of the integral equation relating normal induced 
velocity to circulation in lifting-line theory can be 
solved easily by a method of successive approximation 
if the transformation from the "lifting line" to the 
circle ia known. Quicker methods of calculating a func- 
tion from its conjugate than those given in this appendix 
or in reference H would therefore be highly useful. 

The U3e of the Fourier series rather than the 
Integral relations in the calculations of this paper was 
based on the following consideration. Because the func- 
tion l/z is regular outside the unit circle, the real 
and Imaginary parts of l/a on the unit circle, namely, 
cos «P and -sin <P, satisfy the integral relations (6), 
(7).  The substitution of -sin flP for Ay In equa- 
tion (6) and subsequent numerical evaluation by the 20- 
point method of reference 2 gave results thut were higher 
than cos flP by a constant error of 2.8 percent.  Evalua- 
tion by a l+O-point method reduced, the'rerror by half, or 
to l.l(. percent. By the Fourier series, on the other hand, 
the first harmonic (a one-point method) suffices to give 
exact results in this case.  It appears, therefore, that 
when the given real function Is expressible In terms of 
a small number of harmonics, as is the case in airfoil 
applications, the Fourier series method is preferable to 
the use of the integral relations. 

The Runge schedule offers a convenient means of 
carrying out the basic calculation of mapping functions, 
namely, the analysis of a periodic function into its 

t . ; 
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Fourier series and the synthesis of a Fourier series 
into a function. The theory and use of the schedule is 
described, for example, in reference 8, wherein are also 
given schedules for 12-, '<Ü\.-,  36-, and 7^-point harmonic 
analyses. 

The necessary analyses and syntheses in the diroct 
and inverse CMF methods ore carried out in accordance 
with equations (1<.) and (5) £»nd their derivatives. 
Table IX contains the scheme of substitution into the 
Runge schedule, table X, for the various CMF methods. 
In the diroct method, for example, the set of values 
Gy/12 corresponding to the evenly spaced ©-values is 
substituted into the y_ spaces at the beginning of the 
sum-table.  The suns ana differences of those quantities 
are then obtained as directed at the left of the indi- 
vidual tables and substituted into the succeeding tables. 
In this way the entire sum-table is filled out.  Before 
the product-table ia used, the sur>i-table should be checked. 

The quantities surrounded by tho heavy Unas in the 
sum-table are ne;ct multiplied by the proper factors at 
the left of the product-table anü tno results entered 
in the appropriate spuces as indicated by the letters 
at the left cf the individual product-spaces.  A heavy 
horizontal line at the lower left edge of a product- 
space Indicates that the corresponding product has 
already been obtained in a previous apace in the same 
row. A heavy vortical lino along tho left edge of a 
product-space is used to euphasizo that the negative 
value of the product of tho sum-tfeble quantity and the 
product-table fuctor is t.i be entered. The euraa of the 
product-tfible columns are then entered in the I, II, III, 
and IV spaces. A check on the work of the product-table 
up to this point is provided by the columns at the right. 
The sums and differences of the I, II, III, and IV quan- 
tities complete the product-table and give tho Fourier 
coefficients an, bn corresponding to 8y. 

In order to perform a svnthesis calculation fron a 
*an. set of Fourier coefficients an, bn to the values of the 

corresponding function at the even ©-points, tho coef- 
ficients an, bn aro entered in the d and D spaces, 
respectively, in the sun-table, s.nd the rer.iainder of the 
sum-table and the product-table worked through as before. 
The final vuluas in the an, bn spaces of the pi'oduct- 
table are then entered in the d and l>    spaces at the 
beginning of tho sum-table r.nd the sums and differences 
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obtained as indicated by the synthesis column at the 
left.  (Note that du and dj^ ara to be multiplied 
by 2.) The resulting yn quantities are the desired 
values of the function. 

The numerical values in tables X(a) and (b) illus- 
trate the process of obtaining Oxi(<P) from öyi(flP) in 
the first approximation by the direst CMP method for the 
NACA 6^12 airfoil. 
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APPENDIX B 

THE MAPPING OP MORS GEN^Ui REGIONS 

Simply Connected Regions 

If the CMP method is applied to the mapping of a 
simply connected boundary with a vertical discontinuity, 
such as a rectangle or an infinite line with a vortical 
step, the ambiguity nf the ordinate Ay at the discon- 
tinuity will prevent an automatic and rapid convergence 
of the method. Although the difficulty could be lessened 
in particular cases such as for rectrtngles by taking the 
diagonal as x-axis, thus removing the vertical discon- 
tinuity, or by using symmetry, as with squares, it is 
evident that in general a reference shape particularly 
suited to the contour under investigation is needed. 
The circle has been shown in reference 2 to be a good 
reference shape for the square.  It could be expected 
therefore that an ellipse would be a t;ood reference shape 
for the rectangle,  furthermore:, Just as the mapping 
function based on the cii'cle was formed of an angular 
displacement and a radial displacement, the mapping 
function based on the ellipse should be formed of dis- 
placements along and orthogonal to the ellipse, that is, 
should be specified by elliptic coordinates.  The speci- 
fication of a figure by elliptic coordinates {ty,  B)  in 
the physical plane z    is equivalent, however, to the 
transformation of the figure to a t'-plane by the tv/o 
transformations 

1 w+i8 z = p» + »•  where p' = e 

t' = log p' where t' = i|/ + 19 
(39) 

and specifying the transformed figure by the Cartesian 
coordinates of the t'-plane ('>, 9). The rectangle under 
consideration v/ill be a near-sircular shape In the p'- 
plane and a near-straight line shape in the t'-plane. 
The mapping of the rectangle by means of an elliptic 
mapping function in the physical plane is therefore seen 
to be accomplished by the Theodorsen-Garrick method in 
the near-circle p'-piano and by the CMP method in the 
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near-straight line t'-plane. Prom this point of view, 
therefore, tho Theodorasn-rvarriek method consists of 
specifying an ftirfoil in the physical plane by elliptic 
coordinates, formlug the corresponding elliptic napping 
function  ('!/ - ^0) - ic, which conformally relates the 
airfoil to an ellipse or .Tou'towskl airfoil as a basic 
shape, and expressing the elliptic mapping function as a 
regular function outaido the circle. On the other hand, 
In the t1 = log p'-plane tho Theodcrsen-Garrick Method 
consists of tho transformation of the noar-strtight 
line *(6) to the straight linn *0 = Constant by means 
Of what is now the CKF U' - vl/p) - ic. Thus, the 
Theodorsen-Garrick method may be regarded as a form of 
the CMP method, in which log p' takes the place of z 
and log p, the piece of I. 

The mapping of siiaply connected regions by dif- 
ference mapping functions based on the curvilinear co- 
ordinates appropriate to the particular reference 3hape 
considered is therefore equivalent to U3ing the CHK dif- 
ference function z  - £ in the plane of the near-straight 
line into which the reference shape is initially trans- 
formed. 

Mapping of the Entire Field 

The Fourier series representation of mapping func- 
tions, equations ('(.) and (5)» enables the calculation of 
corresponding points in the two regions to be made, once 
the correspondence of the boundaries has been calculated. 
By the latter calculation the coefficients an, bt, and 
the radius R of the circle of correspondence have been 
determined. If now a larger radius R1 > R be substi- 
tuted for H    in equations (1).) and (5), the resulting 
synthesis of the Fourier series will yield the mapping 
function for the circle of rudlus  R';  that is, will 
determine points in th« given plane corresponuing to the 
points In tho circle plane at tho distance TO     from the 
origin.  It is nocesanry, of course, to uso the napping 
function in conjunction with the shape in the physical 
plane corresponding to the larger circle.  In this way the 
entire corresponding fields can be mapped out.  It may 
be noted that substitution of R' < R for R in equa- 
tions (I4.) and (5) enables the mapping of those corre- 
sponding points inside the original contours for which 
the resulting Fourier snrios oonverge. 
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It appears to be more difficult to find the point 
in the circle plane corresponding to a point of the given 
plane than vice versa. This calculation may, however, 
be accomplished by a method of successive approximations. 
For example, if the given plane is that of a near circle 
the polar coordinates of the given point in the near- 
clrsle plane arc assumed to be a first approximation to 
the coordinates R'  and <P of the desired point in the 
circle plane. Substitution of these values into equa- 
tions (Ij.) and (5) yields a first approximate mapping 
function which cun be used to correct the coordinates R' 
and v,  etc.  — 

Biplanes 

In the case of the biplane arrangement the CMP may 
be set up directly in the physical plane in the same way 
as for the single airfoil. In place of the simple trans- 
formation from straight line to circle, however, the 
transformation from the two extended chord lines of the 
airfoils to two concentric circles is used. Hiis trans- 
formation is derived in reference 9-  The CMP method for 
biplanes bears the same relation to the method of ref- 
erence 9 that the CMP method for monoplane airfcila bears 
to the Theodorsen-finrrick method (reference 2). 

For biplanes (fig. 12) the CMP z - £, being regular 
In the region outside the two straight lines, is regular 
in the annular region of the p-plano and consequently ia 
expressible as a Laurent series in p 

- £ = 

where 
Pn 

= an + ibr 

(ko) 

If, for the inner circle, the relationship is written 

z - t  =  äX-L + 1 by^ 

p*R1e
1,p 

(Ui) 

A: 
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and for the outer circle 

£ a &Xg + i Ayg 

R->9 i«p 
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(1(2) 

there la obtained, upon substitution into equation (1^0) 
and reduction 

1 

COB ntp + Y~
bn-b-n sin n(p (l^a) 

Ax2(«P) = a0+Y~2ali=a ooa ng + V"* *""*-» sin n<p    (l£b) 
Z      H2 L      R2 

1 

ayit<p) = b0 + \     -•• •• • • •    cos n<P 
Z__ Rin 

1 1 

C0 

^V"" 6n - *-n 

"Z_   *in sin ncp    (I4.30) 

ay2<<P) = b0 + \b" * *~n cos nfP -V~an"!"" sin n«P    (l+Jd) 

1 1 

These equations are the generalization to the biplane of 
equations (I).) and (5K ?he corresponding integral rela- 
tions may be derived aa in reference 9• 

The solution of equations (1+3) in either the direct 
or the inverse problem way be accomplished as before by 
aucceasive approximations.  For example, in the direct 
method the two airfoils are given. If no initial approxi- 
mation biplane were available, the two chord lines would 
be taken as the initial straight lines, by the trans- 
formation of reference 9 this fixes the chordwise loca- 
tions on the straight lines corresponding to a set of 
evonly spaced 9 points on the concentric circles. The 
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ordlnates Ay^C») can therefore be measured, which 
determines Ay^©) by analysis s.nd synthesis of equa- 
tions (itfe) and (h3d), respectively.  (The radius ratio 
Rg/Rj. la fixed by the initial transformation from the 
straight lines to the concentric circles.) These Ay^iV) 
values then detoimine a 3et of Ax-,(9) values by the 
given shape of the second fiirfoil and the known chordwlse 
locations of its first approximation straight line. 
Analysis of Ax-,(cp) and subsequent synthesis of    4x^(9) 
by equations (i+5b) and (l;Ja), respectively, determines a 
correction to ii-,    by a horizontal stretching process 
(constant Ax, Ay - adjustuent of r-,) to maintain the 
given airfoil chord.  The procedure is now repeated with 
Ay^f1?) as the initial set of measured ordlnates that 
determines Ayj_(©), Ax^(<p), and Ax2(<P) as before. The 

radius Rg can now be similarly corrected. This step 
completes the first approximation. For the second approxi- 
mation a new correspondence between the corrected straight 
lines and the concentric circles is calculated and the 
procedure repeated. 

The inverse problem could also be solved by methods 
Similar to those given for the isolated airfoil.  Sup- 
pose, for examole, a wlm; section wore given and it were 
desired to derive a slat of given chord and given approxi- 
mate location anr! having a prescribed velocity distri- 
bution.  The method of surface potentials, for example, 
enables the calculation of  a first approximate Ax^(<P) 
(subscript 1 refrrs to slat).  The initial correspondence 
of points between the straight lines and concentric 
circles, and therefore also Hg/Hj, being determined by 
the initially assumed straight lines, the function AxgtflP) 
ia thereupon obtained by analysis and synthesis of equa- 
tions (i(.3a) and (lj.3b), respectively. The horizontal dis- 
placement AxgtT»)  thence determines Aygf^) by the 
known shape of the main wing section. The determination 
of Ay^(o) by analysis and synthesis of equations (ij.3d) 
and (l*3o) completes the calculation of the first approxi- 
mate slat section, for which the exact volocity distri- 
bution can now ulso be calculated.  If the main wine; 
section were alao unknown then the wing section above Is 
regarded as an initial approximation, the role of the two 
airfoils is reversed, end the procedure repeated to com- 
plete the first approximation. 
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The CMF method can be generalized in the same manner 
for multiply connected regions. The transformation from 
the n reference shapes (such aa straight lines) to n 
circles being presumed known, the CMF can be set up as a 
series convergent in the region between the n circles, 
and the mapping function for each boundary explicitly 
expressed by allowing the coordinate vector to assume its 
value on each boundary in turn. A method of successive 
approximation for the solution of the resulting equations 
depending on the particular problem under consideration 
would then be established. 

Gascado of Airfoils 

A simplified but practically important n-body problem, 
namely, the cascade of airfoils, may be mentioned finally. 

The reference shape into which the cascade of air- 
foils, figure lj, is to bo transformed is ch03en a3 the 
cascade of stright lines coinciding with the extended 
chord lines of the airfoils of the cascade.  The trans- 
formation from the cascade of straight lines to a single 
circle is well-known, reference 10.  The CW  chosen as 
indicated in figure lj la therefore expressible as an 
inverse power seriaa in the circle plane and the resulting 
procedure in either the direct or the inverse problem is 
seen to be essentially the same as for isolated airfoils. 
The detailed application of the CMF to cascades of air- 
foils is given in reference 1. 
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APPENDIX C 

THB DETERMINATION OP MAPPING FUNCTIONS BY THE 

CAUCHY INTEGRAL FORMULA 

The foregoing methods of conformal transformation 
have been presented from the point of view of represen- 
tation of the various mapping functions a3 infinite 
series.  In particular, the expression of the Cn.rte.slan 
mapping function as an inverse power series valid every- 
where outside and on a circle led to the Fourier series 
representation for the CMF on the circle itself.  The 
Integral formula representation was then obtained from 
the Tourier series by thd method of reference 5-  It is 
of interest to see how the integral relations (O and (7) 
can be derived diractly from the Cauchy integral formula 
for a function regular outside a circle.  (These integral 
relations have also been derived by Betz, reference 7» 
by a hydrodynanlcal argunent.) Since the applicability 
of the Cauchy integral formula is not restricted to 
circular boundaries, however, the results v/111 be capable 
of generalization, In principle at least, to arbitrary 
simply and multiply connected regions. 

The Cauchy integral formula gives the values of an 
analytic function f(p) within a simply connected do- 
main D in terns of its valuas f(t) on the boundary 
of the domain as 

f(p) 
~ a*i J t - p 

dt (W) 

where the path of integration Is counterclockwise around 
the boundary. Consider the domain D outside the simple 
closed boundary C in the p-plrne (fig., ll).).  This domain 
can be made simply connected by an outer boundary B and 
the cuts between the two boundaries, as indicated by the 
dotted lines.  The Cauchy integral formula for the func- 
tion f(p)  at an Interior point p of the domain D, 
in terms of Its values on the boundary is 

f(p) = 
Ziri Jc t - p     2,1 JB 

f(t) dt U5) 
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where th«J equal and opposite integrals along the outs 
have been omitted.  She paths 01'  Integration are Indicated 
by the arrows In figure ll}.  The function f(p)  is as- 
sumed to be regular everywhere outside the boundcry C 
and in particular to approach the limiting value f^, as 
P—^o'. If the boundary H    is enlarged indefinitely, 
the integrand of the second integral of equation (h5) 
approaches f^/t and thus 

11a 
t—» 

2»~I f(t) t - p 
dt = f_ (1*6) 

The variable p will now be made to approach a point t' 
on the boundary C,  and equation (45) will consequently 
reduce to en  Integral equation for the boundary values 
of a function regular everywhere outside and on the boun- 
dary.  In order to evaluate properly the contribution of 
the remaining (first) integral of equation ()+5) 'n Mie 
neighborhood of t»,  thn boundary 0    is modified ns 
indicated in figure ll;. The point p is nade the center 
of a semicircle whoso ends are faired into the original 
boundary. As p—»t>,  the notified boundfry approaches 
coincidence with the original boundary.  The integral 
over the modified bounda•y is nov. evaluated as the nun 
of tiie integral ever the semicircle, which in the limit 

is half the residue of the integrand or —f(t'), and the 

integral over the rost of the path, which in the limit 
is analogous to the O'auchy principal value of a real 
definite integral of which the integrand becomes infinite 
at 3ome point in the Interval of integration. Equa- 
tion (i(5) therefpro becomes, in the limit, 

•f(t U = JL f J11L.  dt 
2TT1 JC t - t- 

+ f-, (hi) 

In addition, there in the auxiliary condition that 

t = f„ (he> 711 Je  fc 2Tri 

which follows from tlie fact that f(p)  is regular every- 
where outside the boundary C. Equation (hi)   is well 
knawn in the thecry of functions of a complex variable. 
(S<se reference 11.) 
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If, now, the function ftp) is taken as the Cartesian 
napping function  z - i  or, on the boundary, 

f(t) = Ax + i Ay 

and if, further, the boundary 
With origin at the center, 

- t » e*°+1<P 

f . e*°+1<P' 

(49) 
is taken as a circle 

(50) 

;        • 

m 
'.',* 

1 -1 
•' 

• 

substitution of equations (I4.9) and (50) into equation (lj.7) 
and using equation (kB)  (with f = 0) leads to the inte- 
gral relations (6) and (7). If the polar mapping func- 

tion log Ef = ty - i« s (• - \|/0) - i(cp - 9)  (reference 2) 
is substituted for f(t),  the Theodor3en-Garrick integral 
relations »ire obtained. 

The Cauchy integral formula has already been applied 
(reference 12) to problems of confortaal napping in the 
manner just indicated. Bergman has included in refer- 
ence 12 (chapter XI) contributions of two Russian authors, 
Gershgorin and Krylov.  In reference 12.  the mapping func- 
tion from a circles to a near circle was taken In the form 
log p.  The resulting integral equation doos not appear 
to be as convenient äs those of the CG? methods. The use 

of forms such as log £- or 
p 

z - J are not only accurate 

numerically since they express changes in the coordinates 
of the boundaries, but also thsy lead to pairs of integral 
equations which contain the solutions of both the direct 
and the inverse potential problems. 

Prom the analysis given it appears possible to trans- 
form conforainlly from one boundary to another without 
requiring the transformation from either boundary to a 
Oircle, slnoo the boundary C in equation (h7)  cnn be 
rather arbitrary and f(t) can be taken as a mapping 
function from this boundary to another arbitrary one. 
The resulting integral equation for the mapping function 
is, however, not as easy to solve numerically as when the 
boundary C is a circle. 
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Once the conforraal correspondence between two boun- 
daries is known, corresponding points outside the boun- 
daries can be. determined by the Cauchy integral formula 
(1(4) •  It is roteu that th« Cauchy integral tives the 
correspondence of individual pairs of points rather than 
the correspondence of entire boundaries at once, which 
is given by the Fourier series representation.  Further- 
more, the possibility exists of determining pairs of 
corresponding points inside the given boundaries by the 
Cauchy integral, that is, of analytically continuing the 
eonfonnal transformation boyond the original domains. 
For if the transformation from a boundary C in a 
p-plane to a boundary C1  in a p'-plane were known, the 
outside regions corresponding, then the correspondence 
between a boundary A  internal to C and a boundary A' 
internal to C,  if it existed, could be determined by 
an application of the Cauchy integral formula to the 
region bounded by A and C. 

For example, if the boundaries A and C are taken 
as concentric circles t.rxd  the mapping function as 

f(p) = log £ 

if  - U  = (* - X) - i(, 9) (5D 
in the notation of figure 15, the Cauchy integral formula 
applied to the annular region in the p-plane (assumed 
free of singularities of the mapping function) yields, 
in the limit as the variable point p approaches the 
inner circle A, 

rt2ir i ••-•• 9i " 'l' 
V*l* * " ST I        £l("l ) oot       2 d<Pl 

1 f« «„(»ei «*»(y<y)•»,(»„) »j°hfo,-V, 
2"Jo oo8h (X0 -Xi) - eo> (<p0 -fly) 

•*Pn (52a) 

r»2ir 

*i^l'>"- ST       *i('i> cot   \        ^1 \}0 ^ 

+ ^r2"*o<*o) *» fa-*!')*«.(%) »Wx, - yi)dT 
"Jo ooeh (X„ - Xj) - ooi (po - ^') ° 2tr (52b) 
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In addition, the condition of regularity of the function 
f(p) In the annular region yields the auxiliary condi- 
tions 

_1T2W 

2Vo 
_ 1 

«ld1 " ti I       £odl»V) 
o        vo 

i»2w 

c/o 

T  /)2w       , fiZv 
(53) 

In the problem under consideration,the napping function 

o o' o o 

e*°. "*1 e x for the outer boundaries la known. The radii 
of the concentric circles are given. The second integral« 
of equations (52) are thus known functions of 'i'. Equa- 
tions (52a) and (52b) therefore constitute a pair of 
integral equations, similar to those of Theodorsen-Garrick, 
for the warping function !p1f<P1'\ - I'TY'TV pertaining 
to the inner boundaries.   v '     »  ' 

It is noted that If th3 variable point p of the 
Cauchy integral formula for the annular region is made 
to approach the outer boundary C, then two additional 
Integral equations similar to equations (52a) and (52b) 
are obtained. These equations, together with equa- 
tions (53), are a generalization to the case of ring 
regions of the corresponding Theodorsen-Garrick 
equations for simply connected regions and can be used 
for the oonformal mapping of near circular ring regions. 
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TABLE  I 

CAHTESIAT: KAJPDKJ FUNCTION FOR SYMMETRICAL 

JO-PSKCCTJ  THICKHES3  JOOTOWSKI   PROFILE 

(radians) Ax0 A7o dAx0/d<p dA;'0/d<p 

•«4 -0.319 0 0 0.375 

l -.job .096l(. .119 .355 

2 -.2S8 .132 .226 .296 

3 -.190 .250 .309 .206 

4 -.101 .287 .552 .0994 

5 -. 0072*4. .295 .352 -.0351 

6 .0798 .270 .301). -.1I4.9 

7 .lij.8 .213 .212 -.233 

8 .I69 .150 .0916 -.272 

9 .197 .o3iu -.0261 -.2^0 

10 .179 .0291 -.O95G -•ii+9 

11 • IS!* .001+12 -.082k -.0346 

12 .lk2 0 0 0 

TABLE   II 

CONSTANTS HSED 'WITH    CMF    OF TABLE   I 

Profile T \ut T r <PT 

(deg) 
ut 

Joukowskl 0.30 1.000 0.0387 1.230 0 l80 1.000 

Derived .at» .805 .0716 I.I85 0 1Ö0 .835 

Derived .12 J+02 .0557 1.0928 0 l80 .453 
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TABL3 III 

OMP    FOR 6-PERC3NT-CAMBER CIRCULAR-ARC  PROFILE 

(radians) 
AX0 ^0 d4x0/d<p dAy0/dJ> 

6  *  12 
0 0.120 0.108 0 

7 .0270 .11I4. .0960 -.okQk 

8 .OI4.82 • 0953 .0638 -.0371 

9 .0592 .069I4. .0171 -.109 

10 .0565 .0I4.05 -.0363 -.106 

11 .0I4.08 .0160 -.031+14- -.O78I 

12 • Oll+2 .00169 -.115 -.0279 

13 -.0170 .00214.6 -.117 .03I4.6 

ik -.olt-59 .019!). -.0352 .0926 

15 -.0587 .0I4.90 -.0239 .128 

16 -.0552 .0328 .0506 .125 

17 -.0535 .110 .113 .0756 

18 0 .120 .136 0 

TABLE  IV 

CONSTANTS USED WITH    CMF    OF    TABLE  III 

* " 

i * 

Profile 
C 

(per- 
cent) 

uc \uc T r (deg) (deg) 
ai 

(deg) 
clIdeal 

Derived 

Circular 
arc 

3 

6 

9 

O.502 

1.000 

1.502 

0.501 

1.000 

1.14-99 

0 

0 

0 

1.0052 

I.OO72 

-3.37 

-6.8I4 

183.37 

186.61+ 

0 

0 

0.37 

.75 

Derived 1.0050 -10.26 190.26 0 
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THE USE OF THE RUNQE SCHEDULE IN THE ANALYSIS 
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